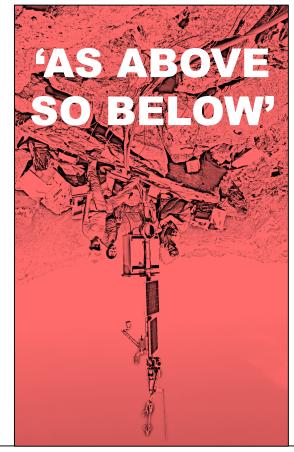
18th SWISS geoscience meeting 2020 zurich

# A 'subsurface weather station' to measure boulder-mantle heat fluxes on Murtèl rock glacier

GEOTEST

GEOLOGEN / INGENIEURE / GEOPHYSIKER / UMWELTFACHLEUTE

D. Amschwand<sup>1\*</sup>, M. Scherler<sup>1</sup>, M. Hoelzle<sup>1</sup>, B. Krummenacher<sup>2</sup>, C. Kienholz<sup>2</sup>, and H.-U. Gubler<sup>3</sup>




#### [1] Key points

- 'Permafrost Meltwater Assessment eXpert Tool' (PERMA-XT).
- Innosuisse collaboration between Uni Fribourg and GEOTEST.
- Project duration: 2020-2023.
- Aim: More reliable ice-rich permafrost runoff forecasts by improved process understanding of heat exchange between atmosphere and permafrost body.
- $\bullet$  Strategy: Thermal degradation + ice-content estimate  $\to$  quantification of permafrost melt

#### [2] Research idea and methods

- We installed a weather station on the rock-glacier surface and a subsurface 'mirror' array of sensors placed in natural cavities in the open-framework boulder mantle: 'as above, so below'.
- The subsurface array captures conduction in boulders, air and water flow, radiation, and energy storage in the active layer.
- We study heat exchange processes between atmosphere and permafrost table at a high level of detail.
- This process understanding will also improve predictions on downwasting rates of debris-covered glaciers.



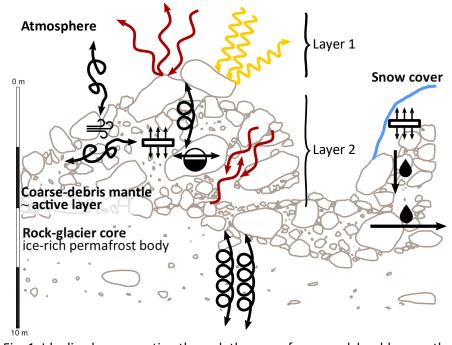



Fig. 1: Idealized cross-section through the open-framework boulder mantle with a furrow-and-ridge micro-topography. Fluxes (symbols in **Tab. 1**, on sheets 2, 3) and measurement design: (i) fluxes at the surface (atmosphere, snow; **Layer 1: 'as above'**), and (ii) fluxes within the boulder mantle (including water; **Layer 2: 'so below'**).

Affiliations and contact | ¹Alpine Cryosphere research group, Université de Fribourg, Ch. du Musée 4, CH-1700 Fribourg | ²GEOTEST AG, Bernstrasse 165, CH-3052 Zollikofen | ³Alpug GmbH, Richtstattweg 3, CH-7270 Davos-Platz \*dominik.amschwand@unifr.ch

#### [3] Sensor deployment

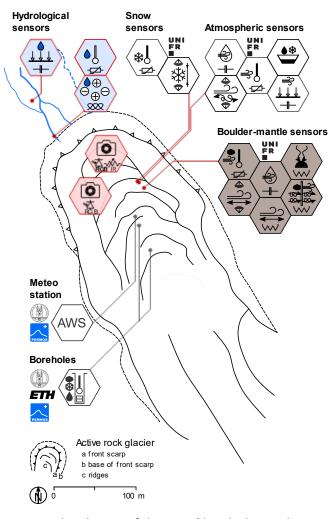
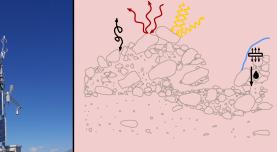
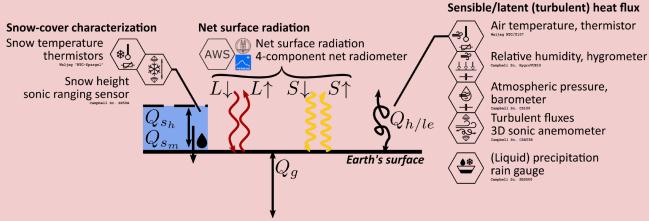



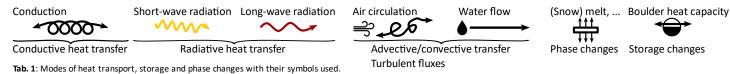

Fig. 2: Sketch map of the Murtèl rock glacier showing the locations of the existing sensors (meteo station and boreholes) and newly deployed sensors (cameras, hydrological, snow, atmospheric and boulder-mantle sensors. Installation in August 2020).



[4a] Measurement design: Layer 1


## 'AS ABOVE'

Atmosphere & snow sensors


The existing automatic weather station (AWS) is complemented with a sonic anemometer system to capture turbulent heat fluxes (eddy correlation) and snow pylons to characterize the snow cover.



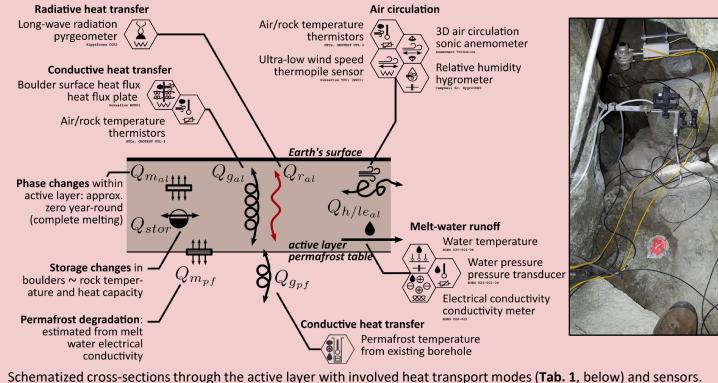




Schematized cross-sections through the surface–lowermost atmosphere with involved heat transport modes (**Tab. 1**, below) and sensors. The ground heat flux,  $Q_a$ , is the link to the layer 2 ('so below').

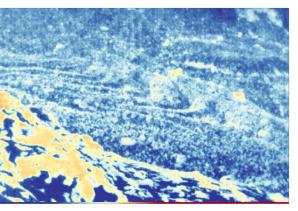




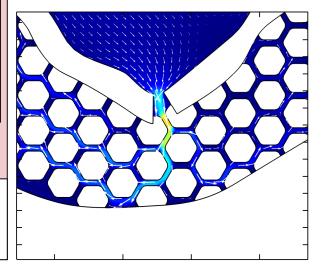



[4b] Measurement design: Layer 2

## 'SO BELOW'


Boulder-mantle & hydrological sensors

The ground heat flux,  $Q_a$ , is more than simple conduction, because all energy transfer modes (**Tab. 1**) occur in the coarse-debris mantle. The debris cover leads to a non-linear, slowed response of the permafrost body to atmospheric warming.




#### [5] Complementary investigations

- Time-lapse visible images for snow conditions.
- Time-lapse thermal infrared images (TIR) for surface temperature (Fig.  $\downarrow$ ).



- Electrical resistivity tomography (ERT) for nearsurface active layer characterization.
- GPR, qualitative smoke tracer tests.
- Numerical modelling of small-scale air circulation (*Fig.*  $\downarrow$ ).





Conductive heat transfer

Short-wave radiation Long-wave radiation WW.

Radiative heat transfer

Air circulation Water flow Advective/convective transfer Turbulent fluxes



Tab. 1: Modes of heat transport, storage and phase changes with their symbols used.

• Thermistors distributed across rock glacier.

WS01/1

WS01/3

#### [6] Preliminary data from below: The rock glacier enters the winter mode!

• Data since late August allow a glimpse into the different cooling mechanisms of the rock glacier.

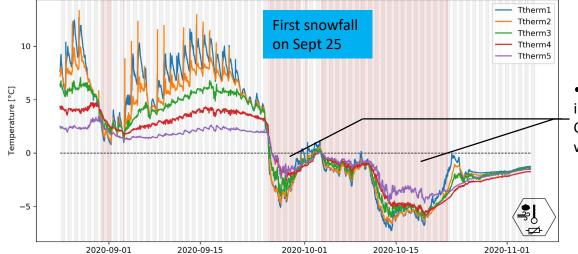
#### [6a] Thermistors

- 5 Thermistors from surface ('Ttherm1', blue) to bottom of cavity at 2.5 m depth ('Ttherm5', purple).
- Decoupling from surface conditions and air stratification in cavity.
- Temperature inversions in cavity (shown in red) lead to instable stratification and air motion.

#### [6b] Thermo-anemometer

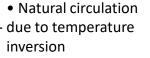
- Wind speed estimate from cooling rate of an intermittently heated plastic foil ('wind-chill effect').
- 'WS01/1' near 'Ttherm5' (purple) at cavity floor, 'WS01/3' (blue) at surface.
- Processes: Daily cycles, natural convection, wind pumping (forced convection).
- Opposing diurnal cycles in different heights of cavity.

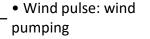
### Cavity air circulation


Air temperature on

vertical profile

 Daily cycles with peak in early morning


#### Surface air circulation


 Daily cycles with peak in late afternoon (katabatic wind?)



Thermistor Chain 1

• Temperature
inversions:
Cold near surface,
warmer at depth





 No wind pumping
 beneath thick snow cover

Upward radiative flux

#### [6c] Pyrgeometer

- A pair of pyrgeometers measures longwave radiation in cavity.
- Slow shift from net downward (heat gain) to upward radiative flux (heat loss/cooling)?

#### Long-wave radiation



